Assessing the Differential Fluid-Penetration Resistance in the Concrete Cover

Through Formation Factor Mapping

Majed Karam^{*}, R. Douglas Hooton

Concrete Materials Group

*majed.karam@mail.utoronto.ca

Concrete Curing and the Need for Performance Framework

Impedance Spectroscopy of Concrete Cover

Discretize the concrete cover into finite volumes of representative size using electrodes embedded in the fresh concrete, enabling a spatial mapping of the electrical resistivity (ρ_{bulk}).

 \Rightarrow Detect curing differential effect on porosity and pore structure connectivity:

$$\frac{\delta curing}{\delta x} \propto \frac{\delta \rho_{bulk}}{\delta x}$$

 \Rightarrow Quantify resistance to mass and ionic ingress through the formation factor (F); ionic diffusion (D)^[2] and Darcian

permeability (*k*)^[3,4]:

UNIVERSITY OF

CORONTO

$\frac{\delta curing}{\delta x} \propto \frac{\delta F}{\delta x} = -\frac{\delta D^{-2}}{\delta x} = -2 \frac{\delta d_c}{\delta x} \frac{\delta k^{-2}}{\delta x}$

Considerations

- ⇒ Electrode layout should define a representative volume element
- \Rightarrow Non-uniform degree of saturation and pore

fluid composition to be homogenized

Electrode Layout

Accounting for the **intrinsic variability** caused by the composite nature of concrete with phases of variable electrical conductivity. Defining the layout is a trade between **precision** and **accuracy**—opt for an alternate electrode depth (maximize tip distance with minimum vertical spacing). Empirical sensitivity analysis of layout based on sealed sample (nominally uniform electrical resistivity field):

Sample Conditioning

Moisture desiccation causes differential degree of hydration, leading to variability in **volume assemblage** and pore solution **ionic concentration**. In addition, the **degree of saturation** of the pores is variable, strongly affecting the measured electrical resistivity. Options: 1) **estimate** the parameters and adjust the output (for insitu testing—quality control), or 2) **homogenize** by controlling the parameters (lab specimen—quality assurance).

Condition specimen for testing by submerging in **simulated pore solution** for 6 days (Ca²⁺, Na⁺, K⁺, OH⁻)^[5]

⇒ Saturate capillary pores
⇒ Homogenize pore solution chemistry

[1] CSA A23.1 (2019). Concrete materials and methods of concrete construction. Standard, Canadian Standards Association, Mississauga, Ontario, Canada

[2] Snyder, K. A. (2001). The relationship between the formation factor and the diffusion coefficient of porous materials saturated with concentrated electrolytes: theoretical and experimental considerations. Technical report, National Institute of Standards and Technology, Gaithersburg, Maryland, USA

[3] Nokken, M. R. and Hooton, R. D. (2008). Using pore parameters to estimate permeability or conductivity of concrete. Materials and Structures, 41(1):1-16

[4] Moradllo, M. K., Isgor, O. B., Qiao, C., and Weiss, W. J. (2018). Relating formation factor of concrete to water absorption. ACI Materials Journal, 115(6):887 - 898

[5] ASTM C1876 (2019). Standard test method for bulk electrical resistivity or bulk conductivity of concrete. Standard, ASTM International, West Conshohocken, Pennsylvania, USA

[6] Weiss, J., Bullard, K. S. J., & Bentz, D. (2013). Using a saturation function to interpret the electrical properties of partially saturated concrete. Journal of Materials in Civil Engineering, 8 (55), 1097-1106